
Probabilistic Graphical Models
Final Exam - Spring 1398 (2019)

Instructor:
B. Nasihatkon

Name: ID: Khordad 1398 - June 2019

Question 0- Junction-tree / MAP Inference / Max-Sum
Message Passing (46 points)
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non-stationary). We intend to perform MAP inference using max-sum message passing in
the following junction-tree (clique-tree).

* In all cases, simplify your answers as much as you can.
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C) Using parts A and B, prove that for all (by induction). (4δ
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G) Obtain the max-sum sepset belief . (4 points)β
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H) Find the MAP solution using part G. (4 points)
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Question 2 - Gibbs Sampling (14 points)
We use the following Gibbs Sampling algorithm to get samples from the joint distribution of
the MRF in Question 1.
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Bayes Nets Parameter/Structure Learning
Consider the following Bayesian networks with binary variables where the𝐴, 𝐵, 𝐶 ∈ {0, 1},
CPDs are parameterized using table representation.

Network 1 Network 2

● In all cases, simplify your answer as much as you can.

A) Parameterize each network using table representation. How many independent
parameters each network has? (8 points)
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B) Given the training data on the right, write down the
log-likelihood function in terms of the network parameters for
each network. (9 points) 𝑎𝑖 𝑏𝑖 𝑐𝑖

0 0 0

1 0 1

1 1 0

0 1 1

0 0 1

C) Obtain the optimal parameters for each network in terms of the log-likelihood. (8
points)
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D) Compute the likelihood score for each network by substituting the optimal
parameters in part C in the log-likelihood function in part B. Which model is
preferred by the likelihood score? (9 points)

E) Compute the BIC score for each model. Which model is preferred by the BIC
score? ( ) (6 points).𝑙𝑜𝑔(5) ≈ 1. 6

𝐵𝐼𝐶(𝑑𝑎𝑡𝑎) =  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑐𝑜𝑟𝑒(𝑑𝑎𝑡𝑎) −  1/2 𝑙𝑜𝑔(𝑀) #(𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
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